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COMMENT 

Hankel-Hadamard analysis of quantum potential 
x’ + Ax2/( 1 + gx’) 

Carlos R Handy 
Department of Physics, Atlanta University, Atlanta, GA 30314, USA 

Received 17 April 1985, in final form 4 June 1985 

Abstract. The Hankel-Hadamard moment determinant analysis of Handy and Bessis is 
applied to the potential x2+ Ax2/(1 +gx’). Rapidly convergent lower and upper bounds 
to the ground-state energy and first excited state are obtained. Application of a novel type 
of Pad6 analysis allows the determination of all other excited states through an orthogonality 
quantisation prescription. 

In a recent work Handy and Bessis (1985) used the Stieltjer moment theory of 
Hankel- Hadamard determinants to generate rapidly convergent lower and upper 
bounds for the ground-state energy of bosonic systems. In a subsequent work Handy 
and Msezane (1985) extended this technique to first excited states. In addition, through 
a novel application of Pad6 analysis the other excited states were also obtained through 
an orthogonality quantisation condition. The recent interest in the quantum potential 
x2+Ax2/(1+gx2) (Lai and Lin 1982) has prompted us to study this system. Indeed, 
this problem becomes very simple through our approach. We are able to disprove 
some of the results of Lai and Lin (1982) as well as those of Bessis and Bessis (1980); 
however, for the most part our results are consistent with theirs. 

Consider the quantum system -Y’+ [x2+ Ax2/( 1 + gx2)]T = ET. If one transforms 
into the function space @ = exp( -ix2)T then a simple recursion relation for the @ 
space Hamburger moments ensues (b(p)  = dx xp@) 

Equation (1) involves only one undetermined parameter, E, after normalising by 
b(0) = 1. This was not the case for the VI space moments; thus motivating the above 
transformation. Because a non-negative ground state is known to exist, and it must 
have finite positive moments, an examination of the zeros of fi  (2)’s denominator easily 
leads to the expression Eo = 1 - 2g if A = -4g - 2g2. This result for the ground-state 
energy is derived by Lai and Lin (1982) through slightly more complicated analysis. 
A similar argument holds for the first excited state. It is simple to argue that from 
parity the first excited state must be of the form = xN,, where NI is a non-negative 
configuration. Working with the moments of x2 exp( -$x2) NI( x )  one can obtain 
E l = 3 ( 1 - 2 g )  i fA=-4g-6g2.  

The more effective representation in which to implement a Hankel-Hadamard 
determinant analysis is in the function space F ( x )  = exp(-$x2)q(x)/(l  + gx2). We may 
denote the ground and first excited states by q ! ( x )  = x’Ni(x), for i = 0, 1, respectively. 
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The Ni(x) are non-negative. The recursion relation for the moments of 
x2i exp(-ix2)Ni(x)/(l  +gx') is 

An examination of the bounds 0 < &(2) < 03, similar to that done for &(2), leads to 
the bounds 1 + 2i < Ei < 1 + 2i + A/g. 

The Stieltjes moment theory of Hankel-Hadamard determinant analysis says that 
the necessary and sufficient condition for a given set of moments to correspond to a 
non-negative function measure is that the following inequalities hold: 

where $(q)=kfi(2q) ,  and O s n < 0 3 .  
The Hankel-Hadamard determinants are implicitly E dependent polynomials. The 

above inequalities define constraints on E, which are evaluated numerically. These 
results are given in the tables. Note, for given N, all the determinants of order 0 G n S N 
are considered. Of particular note are the results in table 1. The bounds obtained for 
Eo,, do not concur with the results of Lai and Lin (1982) and Bessis and Bessis (1980). 

Once the ground-state and first excited-state values are obtained it is possible to 
use an orthogonality quantisation condition to obtain the higher excited states (Handy 
and Msezane 1985). Specifically, one looks at the expressions G , ( E ;  E , )  = 

J d x  q E ( x ) q , ( x )  = X C z o  r " S , ( w ;  E ;  E , ) ,  where r is implicitly set at unity. The 
coefficients are S , ( w ;  E ;  E , )  = 6 , ( w ;  E )  b I ( 2 w ;  E , ) .  The 6 ' s  correspond to the x-power 

Table 1. Ground and first excited energy bounds from Hankel-Hadamard analysis. A = 0.1, 
g = 2 .  

N E ( - )  E'+' E ;; E b'? 1 %  lh.  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1.012 
1.015 3 
1.016 3 
1.016 7 
1.016 9 
1.017 0 
1.017 1 
1.017 13 
1.017 15 
1.017 16 
1.017 167 
1.017 171 
1.017 174 
1.017 176 

1.026 
1.020 0 
1.018 4 
1.017 8 
1.017 5 
1.017 4 
1.017 3 
1.017 25 
1.017 22 
1.017 21 
1.017 196 
1.017 191 
1.017 188 
1.017 185t 

3.000 1 
3.029 1 
3.031 5 
3.032 10 
3.032 45 
3.032 59 
3.032 66 
3.032 70 
3.032 72 
3.032 74 
3.032 75 
3.032 755 
3.032 758 

3.050 1 
3.035 1 
3.033 7 
3.033 20 
3.033 00 
3.032 90 
3.032 85 
3.032 82 
3.032 80 
3.032 79 
3.032 78 
3.032 775 
3.032 772t 

t Estimated values by Lai and Lin Eo = 1.017 281 60, E,  = 3.032 957 27. Estimated values 
by Bessis and Bessis (1980) Eo= 1.017 89466, E ,  =3.031 773. 
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Table 2. Ground and first excited energy bounds from Hankel-Hadamard analysis A = 0.1, 
g=O. l .  

N E $! E rd 1 h 
E ( + ]  

1 \' 
E ( - J  

1 1.041 1.05 1 
2 1.043 1 1.043 3 
3 1.043 17 1.043 18 
4 1.043 173 1.043 174 
5 1.043 173 7 1.041 173 8 
6 1.043 173 71 1.043 173 72 
7 
8 
9 

3.1 
3.12 
3.120 
3.120 
3.120 08 
3.120 081 
3.120081 8 
3.120 081 86 
3.120081 864 

3.2 
3.13 
3.121 
3.120 1 
3.120 09 
3.120082 
3.120081 9 
3.120 081 87 
3.120081 865 

(A=IOO,g=O. l )  
7 9.976 15 9.976 25 29.780 29.782 
8 9.976 17 9.976 19 29.781 1 29.781 4 
9 9.976 179 9.976 182 29.781 18 29.781 22 

10 9.976 180 0 9.976 180 3 29.781 189 29.781 195 
11 9.976 180 07 9.976 180 12 29 '81 190 8 29.781 191 7 

29.781 191 20 12 - 1191 07 
13 2978119110 29.781 191 13 

I n  

Table 3. Ground and first excited energy bounds from Hankel-Hadamard analysis A = 
100, g = 2. 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

8 ( 5 ) :  
8.4 (6) 
8.6 (7) 
8.67 (7.5) 
8.71 (8.2) 
8.73 (8.35) 
8.74 (8.5) 
8.747 (8.5) 
8.751 (8.6) 
8.754 (8.67) 
8.755 
8.756 
8.756 
8.7572 

10 (19 ) t  
9.3 (14) 
9.0 (12) 
8.88 (10.5) 
8.83 (9.6) 
8.80 (9.3) 
8.78 (9.1) 
8.772 (9.0) 
8.767 (8.95 1 
8.764 (8.87) 
8.762 
8.761 
8.760 
8.7594 

20 
21 
22.7 
23.1 
23.3 
23.51 
23.60 
23.65 
23.68 
23.70 
23.71 
23.72 
23.73 

28 
26 
24.8 
24.3 
24.1 
23.95 
23.87 
23.84 
23.80 
23.78 
23.77 
23.76 
23.75 

+ Results from Hankel-Hadamard analysis for representation in equation (1) .  

series expansion of exp(fx*)(Y( x) /x ' ) ,  and easily obtainable. One then Pade analyses 
(Baker 1975) C," rwS( .w)  = P L ( E ;  r =  l ) /Pg(E:  r =  l ) ,  where the Pade polynomials 
have r degree 'B '  ( W = 2 B ) .  The zeros of the Pad6 provide good estimates for the 
excited-state spectrum. Note, spurious zeros appear and are ignored. The non-spurious 
zeros define consistent eigen energies. All numerical analysis was done on the CRAY 
using single precision arithmetic. 
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Table 4. Lower excited even panty states from Pad6 of Go(E ; Eo). 

Eo=1.017 180 Eo=1.043 17371 E0=9.976180095 Eo=8.75827863 
( A  = 0.1, g = 2) W ( A  = 0.1, g = 0.1) ( A  = 100, g = 0.1) ( A  = 100, g = 2) 

4 5.0473 5.1816 49.3249 35.0187 
9.1928 

6 5.0397 5.1803 49.2525 34.2717 
9.2698 

8 5.0369 5.1815 49.2929 34.0878 
8.5592 9.2728 

10 5.0357 5.1810 49.2917 34.0453 
8.8658 9.2761 

12 5.0351 5.1818 49.2877 34.0402 
8.9594 9.2719 

14 5.0347 5.1812 49.2962 34.0396 
8.9977 9.2729 

16 5.0344 5.1809 49.2930 34.0272 
9.0157 9.2750 

18 5.0341 5.1815 49.2940 34.0023 
9.0250 9.2718 

20 5.0339 5.1812 49.2922 3 3.8940 
9.0302 9.2726 

Table 5. Lower excited odd parity states (E  > E,) from Pad6 of G,(E  ; E,) .  
~ ~ _______~__________ ~ 

E, = 3.032 765 
( A  = 0.1, g = 2) 

E, = 3.120 081 865 
( A  = 0.1, g = 0.1) 

E, = 29.781 191 115 E, = 23.743 326 04 
( A  = 100, g = 0.1) ( A  = 100, g = 2) W 

4 7.0692 7.2324 70.2346 40.485 1 
6 7.0500 7.2309 68.6057 39.9923 
8 7.0434 7.2321 68.5160 39.9679 

10 7.0406 7.2312 68.5133 39.9295 
12 7.0392 7.2306 68.5123 39.631 1 
14 7.0385 7.2314 68.5143 3 8.7 5 3 9 
16 7.0380 7.2311 68.5131 38.2201 
18 7.0377 7.2307 68.5 106 38.0666 
20 7.0375 7.2314 68.5140 38.9605 

The author expresses his appreciation to Professor Frank Cummings for bringing this 
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840R21400 is acknowledged. 
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